Tinker With a Neural Network Right Here in Your Browser.
Don’t Worry, You Can’t Break It. We Promise.

Epoch

Data

Which dataset do you want to use?

Features

Which properties do you want to feed in?

Click anywhere to edit.
Weight/Bias is 0.2.
This is the output from one neuron. Hover to see it larger.
The outputs are mixed with varying weights, shown by the thickness of the lines.

Output

Test loss
Training loss
Colors shows data, neuron and weight values.

Um, What Is a Neural Network?

It’s a technique for building a computer program that learns from data. It is based very loosely on how we think the human brain works. First, a collection of software “neurons” are created and connected together, allowing them to send messages to each other. Next, the network is asked to solve a problem, which it attempts to do over and over, each time strengthening the connections that lead to success and diminishing those that lead to failure. For a more detailed introduction to neural networks, Michael Nielsen’s Neural Networks and Deep Learning is a good place to start. For a more technical overview, try Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

This Is Cool, Can I Repurpose It?

Please do! We’ve open sourced it on GitHub with the hope that it can make neural networks a little more accessible and easier to learn. You’re free to use it in any way that follows our Apache License. And if you have any suggestions for additions or changes, please let us know.

We’ve also provided some controls below to enable you tailor the playground to a specific topic or lesson. Just choose which features you’d like to be visible below then save this link, or refresh the page.

What Library Are You Using?

We wrote a tiny neural network library that meets the demands of this educational visualization. For real-world applications, consider the TensorFlow library.

Credits

This was created by Daniel Smilkov and Shan Carter. This is a continuation of many people’s previous work — most notably Andrej Karpathy’s convnet.js demo and Chris Olah’s articles about neural networks. Many thanks also to D. Sculley for help with the original idea and to Fernanda Viégas and Martin Wattenberg and the rest of the Big Picture and Google Brain teams for feedback and guidance.